Some extensions of the Einstein-Dirac Equation
نویسنده
چکیده
We considered an extension of the standard functional for the Einstein-Dirac equation where the Dirac operator is replaced by the square of the Dirac operator and a real parameter controlling the length of spinors is introduced. For one distinguished value of the parameter, the resulting Euler-Lagrange equations provide a new type of EinsteinDirac coupling. We establish a special method for constructing global smooth solutions of a newly derived Einstein-Dirac system called the CL-Einstein-Dirac equation of type II (see Definition 3.1). MSC(2000): 53C25, 53C27, 83C05
منابع مشابه
The Einstein - Dirac Equation on Riemannian SpinManifolds .
We construct exact solutions of the Einstein-Dirac equation, which couples the gravitational eld with an eigenspinor of the Dirac operator via the energy-momentum tensor. For this purpose we introduce a new eld equation generalizing the notion of Killing spinors. The solutions of this spinor eld equation are called weak Killing spinors (WK-spinors). They are special solutions of the Einstein-Di...
متن کاملThe Einstein-dirac Equation on Riemannian Spin
We construct exact solutions of the Einstein-Dirac equation, which couples the gravitational field with an eigenspinor of the Dirac operator via the energymomentum tensor. For this purpose we introduce a new field equation generalizing the notion of Killing spinors. The solutions of this spinor field equation are called weak Killing spinors (WK-spinors). They are special solutions of the Einste...
متن کاملThe Nonlinear Dirac Equation in Bose-Einstein Condensates: Foundation and Symmetries
We show that Bose-Einstein condensates in a honeycomb optical lattice are described by a nonlinear Dirac equation in the long wavelength, mean field limit. Unlike nonlinear Dirac equations posited by particle theorists, which are designed to preserve the principle of relativity, i.e., Poincaré covariance, the nonlinear Dirac equation for Bose-Einstein condensates breaks this symmetry. We presen...
متن کاملA Local Existence Theorem for the Einstein-Dirac Equation
We study the Einstein-Dirac equation as well as the weak Killing equation on Riemannian spin manifolds with codimension one foliation. We prove that, for any manifold M admitting real Killing spinors (resp. parallel spinors), there exist warped product metrics η on M × R such that (M × R, η) admit Einstein spinors (resp. weak Killing spinors). To prove the result we split the Einstein-Dirac equ...
متن کاملThe Einstein-dirac Equation on Sasakian 3-manifolds
We prove that a Sasakian 3-manifold admitting a non-trivial solution to the Einstein-Dirac equation has necessarily constant scalar curvature. In the case when this scalar curvature is non-zero, their classi cation follows then from a result by Th. Friedrich and E.C. Kim. We also prove that a scalarat Sasakian 3-manifold admits no local Einstein spinors.
متن کامل